Inverse regulation of basal lipolysis in perigonadal and mesenteric fat depots in mice.

نویسندگان

  • Stephan Wueest
  • Xingyuan Yang
  • Jun Liu
  • Eugen J Schoenle
  • Daniel Konrad
چکیده

Given the strong link between visceral adiposity and (hepatic) insulin resistance as well as liver steatosis, it is crucial to characterize obesity-associated alterations in adipocyte function, particularly in fat depots drained to the liver. Yet these adipose tissues are not easily accessible in humans, and the most frequently studied depot in rodents is the perigonadal, which is drained systemically. In the present study, we aimed to study alterations in lipolysis between mesenteric and perigonadal adipocytes in mice. Basal free fatty acid and glycerol release was significantly lower in perigonadal compared with mesenteric adipocytes isolated from chow-fed C57BL/6J mice. However, this difference completely vanished in high-fat diet-fed mice. Consistently, protein levels of the G(0)/G(1) switch gene 2 (G0S2), which were previously found to be inversely related to basal lipolysis, were significantly lower in mesenteric compared with perigonadal fat of chow-fed mice. Similarly, perilipin was differently expressed between the two depots. In addition, adipocyte-specific overexpression of G0S2 led to significantly decreased basal lipolysis in mesenteric adipose tissue of chow-fed mice. In conclusion, lipolysis is differently regulated between perigonadal and mesenteric adipocytes, and these depot-specific differences might be explained by altered regulation of G0S2 and/or perilipin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Depot-specific differences in adipocyte insulin sensitivity in mice are diet- and function-dependent

Fat depots of different localization vary in their biological/metabolic function. We recently provided evidence for different regulation of lipolysis between perigonadal and mesenteric adipocytes; in particular insulin-induced suppression of lipolysis was significantly higher in perigonadal compared with mesenteric adipocytes in chow-fed mice. Moreover, insulin's anti-lipolytic effect was maint...

متن کامل

Time course of changes in in vitro lipolysis of intra-abdominal fat depots in relation to high-fat diet-induced hepatic steatosis in rats.

The purpose of the present study was to determine the time course of changes in in vitro lipolysis and in perilipin content (Western blot) in the mesenteric and/or the retroperitoneal fat depots in relation to the development of hepatic steatosis in high-fat diet-fed rats. Female Sprague-Dawley rats were submitted to a high-fat diet (HF diet; 42 % as kJ) or a standard diet (SD diet) for 1, 2, 3...

متن کامل

Effects of obesity on the relationship of leptin mRNA expression and adipocyte size in anatomically distinct fat depots in mice.

In support of leptin's physiological role as humoral signal of fat mass, we have shown that adipocyte volume is a predominant determinant of leptin mRNA levels in anatomically distinct fat depots in lean young mice in the postabsorptive state. In this report, we investigated how obesity may affect the relationship between leptin mRNA levels and adipocyte volume in anatomically distinct fat depo...

متن کامل

Apolipoprotein CIII overexpression exacerbates diet-induced obesity due to adipose tissue higher exogenous lipid uptake and retention and lower lipolysis rates

BACKGROUND Hypertriglyceridemia is a common type of dyslipidemia found in obesity. However, it is not established whether primary hyperlipidemia can predispose to obesity. Evidences have suggested that proteins primarily related to plasma lipoprotein transport, such as apolipoprotein (apo) CIII and E, may significantly affect the process of body fat accumulation. We have previously observed an ...

متن کامل

Human mesenteric adipose tissue plays unique role versus subcutaneous and omental fat in obesity related diabetes.

BACKGROUND/AIMS Obesity is a common and rapidly growing health problem today. Obesity is characterized by the increase of body fat and an excess of total body fat and, in particular, visceral fat accumulation, is considered to be a risk factor for type 2 diabetes mellitus. To determine whether the malfunction of the mesenteric adipose tissue plays an important role in the diabetic related metab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 302 1  شماره 

صفحات  -

تاریخ انتشار 2012